low-melting polymorph compared to the locking together of molecules in the high-melting form.

We thank the College of Arts and Sciences of the University of Toledo for generous financial support.

References

- BLESSING, R. H., COPPENS, P. & BECKER, P. (1974). J. Appl. Cryst. 7, 488–492.
- BURLA, M. C., CAMALLI, M., CASCARANO, G., GIACOVAZZO, C., POLIDORI, G., SPAGNA, R. & VITERBO, D. (1989). J. Appl. Cryst. 22, 389–393.

CROMER, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)

- CROMER, D. T. & WABER, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- FAIR, K. (1989). *MOLÉN User's Manual*. An interactive intelligent system for crystal structure analysis. Enraf-Nonius, Delft, The Netherlands.
- JACOBSON, R. A. & JENSEN, W. P. (1986). Inorg. Chim. Acta, 114, L9–L10.
- JENSEN, W. P. & JACOBSON, R. A. (1981). Inorg. Chim. Acta, 49, 199–204.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- JOHNSON, J. E. & JACOBSON, R. A. (1973a). J. Chem. Soc. Dalton Trans. pp. 580-584.
- JOHNSON, J. E. & JACOBSON, R. A. (1973b). Acta Cryst. B29, 1669–1674.

Acta Cryst. (1992). C48, 94-97

Crystal Studies of Heterocyclic Compounds Containing One Oxygen and Two Nitrogen Atoms. XV. N,N'-Ditosyl-2,3,5,6-tetrahydro-1H,7H-4,1,7benzoxadiazonine

BY A. STĘPIEŃ, E. WAJSMAN, A. M. BRZOZOWSKI AND M. J. GRABOWSKI

Department of Crystallography, Institute of Chemistry, University of Łódź, Nowotki 18, 91-416 Łódź, Poland

E. MIKICIUK-OLASIK

Institute of Chemistry and Technology of Drugs, School of Medicine, Narutowicza 120a, 90-145 Łódź, Poland

AND C. BAVOUX

Laboratoire de Minéralogie–Cristallographie, associé au CNRS (UA 805), Université Claude Bernard Lyon I, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne CEDEX, France

(Received 1 December 1988; accepted 14 June 1991)

Abstract. $C_{24}H_{26}N_2O_5S_2$, $M_r = 486.6$, monoclinic, C2, a = 27.869 (5), b = 8.374 (2), c = 23.058 (6) Å, $\beta = 119.14$ (3)°, V = 4700 (2) Å³, Z = 8, $D_x = 1.375$ (1) g cm⁻³, λ (Cu $K\alpha$) = 1.54178 Å, $\mu = 22.54$ cm⁻¹, F(000) = 2048, room temperature, R = 0.0455 for 4141 reflections with $I > 3\sigma(I)$. There are two different molecules in the asymmetric unit. Molecule 1 exists in a chair-like conformation; molecule 2 occurs in two forms: a chair-like and a twist-chair conformation in a ratio of 0.63:0.37, respectively.

Introduction. Based on the expected pharmacological properties and complex-formation ability, a new class of benzoxadiazonine derivatives has been synthesized (Glinka, Mikiciuk-Olasik & Kotełko, 1977; Mikiciuk-Olasik & Kotełko, 1984). The possibility of

0108-2701/92/010094-04\$03.00

using them as complexing agents for 99m Tc, employed in medical diagnostics (Kapuściński, Liniecki, Durski & Mikiciuk-Olasik, 1986), seemed to be of special interest. The title compound was obtained by a condensation of N,N'-ditosyl-o-phenylenediamine with bis(2-chloroethyl) ether in presence of potassium *tert*-butanolate. The formula was confirmed by IR, ¹H NMR and MS analyses. The present X-ray structure determination was undertaken to provide the evidence for the structure of the molecule.

Experimental. Colourless thick-prismatic crystals of size $0.2 \times 0.3 \times 0.5$ mm from ethanol at room temperature. Diffraction data measured on a CAD-4 diffractometer using the θ -2 θ scan technique,

© 1992 International Union of Crystallography

Table 1. Positional parameters with e.s.d.'s

 $B_{\rm eq} = (4/3)[a^2B(1,1) + b^2B(2,2) + c^2B(3,3) + ab(\cos\nu)B(1,2)]$ $+ ac(\cos\beta)B$

observed by the criterion $I > 3\sigma(I)$, $R_{int} = 0.0495$;

01 C2 C3 N4 C5

S1

011

012

C11 CI2

C13

C14

C15

C16

C141

C51 C52

C6

N7

C8 C9 S2

021

O22

C21

C22

C23

C24

C25 C26

C241

C53

C54 O1* C2* C3*

N4*

C5*

031

O32 C31

C32

C33

C34

C35

C36 C341

C63

C64

N7*

C8*

C91*

C92*

C41 C42

C43

C44

C61 C62

S4 O41 Table 2. Bond distances (Å) and bond angles (°)

Be	$_{q} = (4/3)[a^{2}B(1,1) + ac(co)]$	$(b) + b^2 B(2,2) + c \cos \beta B(1,3) + bc(3)$	$A^{2}B(3,3) + ab(\cos(\alpha)) + ab(\cos(\alpha$	osγ) <i>B</i> (1,2)	01 01 C2	C2 C9 C3	1·433 (* 1·415 (* 1·51 (1*	7) 5)	C53 O1* O1*	C54 C2* C91*	1·369 (7 1·377 (8 1·42 (1))
01	<i>x</i> 0·5627 (1)	<i>y</i> 0.671	z 0.1987 (2)	$B_{eq}(Å^2)$ 5.5 (1)	C3 N4 N4	N4 C5 S1	1·491 (1·436 (1·656 (9) 6) 5)	01* C2* C3*	C92* C3* N4*	1·41 (2) 1·52 (1) 1·493 (9	')
C2 C3	0.5907(3)	0.6202 (8)	0.2667(3) 0.2726(3)	5·0 (2) 5·4 (2)	C5	C51	1.374 (5)	N4*	C5*	1.437 (8	j)
N4	0.6595 (2)	0.4719 (5)	0.2493(2)	4.3 (1)	C5	C6	1.393 (7)	N4*	S3	1.652 (5)
C5	0.6945 (2)	0.6097 (6)	0.2669 (2)	4.0 (1)	SI	011	1.419 (5)	C5*	C64	1.366 (7)
S 1	0.68560 (5)	0.2959 (2)	0.24716 (6)	4.21 (3)	51 S1	C12	1.438 (4	+ <i>)</i> 5)	C42 C43	C43 C44	1.30 (2)	
011	0.7254 (1)	0.3232 (4)	0.2267 (2)	4.8 (1)	CII	C12	1.363 (5)	C44	C45	1.38(2) 1.37(1)	
012	0.6395 (1)	0.1931 (5)	0.2085 (2)	5.5 (1)	CII	C16	1.387 (-, 9)	C5*	C6*	1.401 (7	')
	0.7736(2)	0.2227(6) 0.2571(7)	0.3298(2) 0.3716(3)	4·1 (1) 4·6 (2)	C12	C13	1.376 (8)	S 3	O31	1.419 (5)
C12	0.7986 (2)	0.2371(7) 0.2047(8)	0.4363(3)	5.7 (2)	C13	C14	1.40 (1))	S3	O32	1.440 (5)
C14	0.7699 (2)	0.1123 (8)	0.4598 (3)	5.9 (2)	C14	C15	1.358 (8)	\$3	C31	1.760 (4)
C15	0.7163 (3)	0.0809 (8)	0.4168 (3)	5.8 (2)	C14	C141	1.372 (1) 8)		C32	1.304 (9	9
C16	0.6902 (2)	0.1328 (7)	0.3521 (3)	4.6 (2)	C51	C52	1.390 (3) 9)	C32	C33	1.394 (7	')
C141	0.7980 (4)	0.052(2)	0.5302(4)	10.0 (4)	C52	C53	1.39 (1))	C33	C34	1.39 (1)	,
C51	0.7695 (2)	0.7661 (9)	0.3495(3)	6.1 (2)	C6	N7	1.414 (:	5)	C34	C35	1.38 (1)	
C6	0.6881(2)	0.7198(6)	0.2184(2)	4.0 (1)	C6	C54	1.409 (7)	C34	C341	1.49 (1)	
N7	0.6437 (1)	0.7066 (5)	0.1531 (2)	4.1 (1)	S4 C41	C41 C42	1.28 (1	B)	C35	C36	1.3/9 (8	i)
C8	0.5963 (2)	0.8129 (8)	0.1353 (3)	4.9 (2)	C41	C42 C46	1.40 (1)		C63	C62	1.35(1)	
C9	0.5796 (2)	0.8223 (7)	0.1882 (3)	5.0 (2)	N7	C8	1.475 (, 7)	C6*	N7*	1.418 (7	'n
S2	0.65868 (5)	0.6804 (2)	0.09226 (6)	4·89 (4)	N7	S2	1.661 (5)	C6*	C61	1.39 (1)	,
021	0.6454(1)	0.8234(5)	0.0524(2)	5·8 (1) 7·1 (2)	C8	C9	1.51 (1))	N7*	C8*	1.50 (1)	
C21	0.6114(2)	0.5349(7)	0.0413(2)	4.5 (2)	S2	O21	1.415 (4)	N7*	S4	1.634 (4)
C22	0.5640 (3)	0.5748 (9)	-0.0143(3)	5.7 (2)	S2	022	1.444 ()	5)	C8*	C91*	1.46 (1)	
C23	0.5292 (3)	0.460 (1)	- 0.0553 (3)	6.5 (2)	C21	C21	1.361 (5) 6)	C91*	C92*	1.48 (3)	
C24	0.5416 (2)	0.298 (1)	-0.0417 (3)	6.2 (2)	C21	C26	1.404 (8)	S4	041	1.427 (7	')
C25	0.5893 (3)	0.2596 (8)	0.0149(4)	6·0 (2) 5.1 (2)	C22	C23	1.367 (9)	S4	O42	1.434 (6	5)
C20 C241	0.5036 (4)	0.3735(8) 0.172(1)	-0.0885(5)	9.0 (3)	C23	C24	1.40 (1)	C44	C441	1.52 (2)	
C53	0.7638 (2)	0.8739 (8)	0.3009 (3)	5.5 (2)	C24	C25	1.372 (8)	C45	C46	1.36 (1)	
C54	0.7232 (2)	0.8533 (7)	0.2366 (3)	4.8 (2)	C24	C241 C26	1.381 (1) 8)	C61	02	1.34 (1)	
01*	0.3764 (2)	-0.0234 (6)	0.3338 (3)	7.4 (2)	C25	C20	1 501 (3)				
C2*	0.3394 (3)	0.0256 (9)	0.2706 (4)	6·4 (2)	C	01	3	113.7 (4)	C5*	C6*	C61	117.4 (5)
C3* N//#	0.3507(2)	0.1921(9)	0.2545(3) 0.2540(2)	5·9 (2) 4.6 (1)	01	C2	C3	109.8(5)	N7*	C6*	C61	120.8 (5)
C5*	0.4131(2)	0.1373(5) 0.0753(6)	0.2340(2) 0.2166(2)	4.5 (2)	C2	C3	N4	111.4 (6)	C6*	N7*	C8*	119.0 (5)
S3	0.42439 (5)	0.3812(2)	0.25149 (7)	5.06 (4)	C3	N4	C5	118.8 (5)	C6*	N7*	S4	119.5 (5)
031	0.4698 (1)	0.3670 (5)	0.2401 (2)	6.2 (1)	C3	N4	SI	112.8 (4)	C8*	N7*	S4	115.0 (4)
O32	0.4308 (2)	0.4584 (5)	0.3106 (2)	6.8 (1)	C5	N4	SI	118.4 (3)	N7*	C8*	C91*	116.7 (7)
C31	0.3710 (2)	0.4805 (6)	0.1833 (2)	4·5 (1)	N4 N4	C5	C51 C6	120.9 (3)	C01+	C8*	C92*	61(1)
C32 C33	0.3089(2) 0.3264(2)	0.4783 (7)	0.1229(3) 0.0694(3)	5.7 (2)	C51	C5	C6	1200(5) $119\cdot1(5)$	01*	C91*	C8*	114.8 (8)
C34	0.2869(2)	0.6412(8)	0.00776(3)	6.2 (2)	N4	SI	011	107.0 (2)	01*	C91*	C92*	58 (1)
C35	0.2895 (3)	0.6396 (9)	0.1390 (3)	6.4 (2)	N4	S1	012	106-2 (2)	C8*	C91*	C92*	60 (1)
C36	0.3318 (2)	0.5627 (8)	0.1923 (3)	5.7 (2)	N4	S1	CII	106.8 (2)	01*	C92*	C8*	115 (2)
C341	0.2437 (5)	0.735 (2)	0.0211 (5)	10.4 (4)	011	SI	012	119.7 (2)	01*	C92*	C91*	58·6 (9)
C63	0.3909(3)	-0.0543(9)	0.1134(4) 0.1401(3)	0°8 (3) 5.4 (2)	012	S1	CII	108.0 (2)	N7*	S4	041	106.6 (3)
C6*	0.3813(3) 0.4539(2)	-0.0391(7)	0.2512(3)	4.9 (2)	SI	CII	C12	$121 \cdot 1$ (5)	N7*	S4	O42	110.4 (3)
N7*	0.4843 (2)	-0.0408 (6)	0.3215(2)	5.9 (1)	S 1	C11	C16	118.9 (3)	N7*	S4	C41	103.8 (3)
C8*	0.4640 (3)	-0.140 (1)	0.3593 (4)	7.1 (3)	C12	C11	C16	120.0 (5)	S2	C21	C22	121.8 (5)
C91*	0.4047 (4)	-0.159(1)	0.3294 (5)	5.0 (4)	CII	C12	C13	120.1 (6)	S2	C21	C26	118.2 (3)
C92*	0.433 (1)	-0.033(3)	0.3/9(1)	8 (1) 7.86 (6)	C12 C13	C13	C14 C15	120.9 (5)	C22	C21 C22	C20 C23	121.0 (7)
041	0.5635 (2)	-0.0137(3) 0.0428(7)	0.3095 (3)	9.2 (2)	C13	C14	C141	120.5(6)	C22	C23	C24	120.9 (5)
042	0.5786 (2)	-0.1508 (7)	0.3981(3)	11.9 (2)	C15	C14	C141	122.3 (8)	C23	C24	C25	117.2 (6)
C41	0.5621 (2)	0.136 (1)	0.4170 (3)	6.8 (2)	C14	C15	C16	123.1 (7)	C23	C24	C241	120.4 (6)
C42	0.5751 (4)	0.103 (1)	0.4818 (5)	9.7 (3)	CII	C16	C15	118.7 (5)	C25	C24	C241	122.3 (7)
C43	0.5796 (4)	0.222 (2)	0.5243 (5)	9·8 (3)	CS CSI	C51	C52	121.8 (6)	C24	C25	C26	122.9 (6)
C44	0.5/34(3)	0.380(1)	0.5047(4) 0.4413(4)	7.9 (3)	CS	C6	N7	120.5 (4)	C52	C53	C54	120.1 (6)
C45	0.5578 (2)	0.296 (1)	0.3977(3)	6.6 (2)	C5	C6	C54	119.2 (4)	C6	C54	C53	120.7 (6)
C441	0.5770 (4)	0.516 (2)	0.5506 (6)	10.7 (5)	N7	C6	C54	120.0 (4)	C2*	01*	C91*	108.7 (7)
C61	0.4609 (3)	-0.1589 (8)	0.2139 (5)	6.6 (3)	C6	N7	C8	116.8 (4)	C2*	01*	C92*	143 (1)
C62	0.4311 (3)	-0.1622 (9)	0.1477 (4)	7.1 (3)	C6	N7	S2	117.4 (4)	C91*	01*	C92*	63 (1)
		* Atoms in mole	cule 2.		C8	N7	S2	113.8 (3)	01*	C2*	C3*	113.3 (5)
					OI	6	C8	110.5 (5)	C3*	N4*	C5*	116.7 (4)
					N7	S2	021	106.6 (2)	C3*	N4*	S3	112.8 (4)
graphite-monochromatized Cu Ka radiation not					N7	S 2	022	109·6 (3)	C5*	N4*	S 3	118-6 (4)
graphice-monocinomatized Cu Ka radiation, not						S2	C21	104.0 (3)	N4*	C5*	C64	121-3 (5)
corre	ected for abso	orption. Latt	lice parameter	ers by least	021	S2	022	119.5 (3)	N4*	C5*	C6*	118-4 (4)
squa	res using 25	reflections i	in the range	e 7⋅8–42⋅2°.	021	52 52	C21	110.3 (3)	C64 N4*	53	031	120.3 (6)
D eflections measured to $(\sin \theta/1) = 0.62 ^{1/2}$					N4*	\$3 \$3	C31	108.5 (2)	N4*	S3	032	105.8 (3)
Reflections measured to $(\sin\theta/\Lambda)_{max} = 0.03 \text{ A}$,				O31	S3	032	120.2 (2)	O41	S4	O42	119-9 (4)	
ranges of $hkl: -34-30, -9-0, 0-28$ respectively.				031	S3	C31	108.5 (3)	041	S4	C41	110-5 (4)	
Fror	n 4695 uniqu	e reflections.	, 4141 were :	accepted as	O32 S3	S3 C31	C31 C32	107·2 (3) 120·2 (5)	042 S4	54 C41	C41 C42	104.5 (4)

S3

S3

C31

C31

C32

C36

120.2 (5)

119.0 (4)

S4 S4

C41

C41

C42

C46

122.6 (7)

119.3 (5)

Table 2 (cont.)

118-1 (8)
121 (1)
121 (1)
117.8 (9)
122 (1)
120 (1)
122.6 (9)
119.4 (7)
121.5 (7)
122.0 (9)

* Atoms in molecule 2.

Table 3. Selected torsion angles (°)

O1-C2-C3-N4	60.5 (7)	O1*-C2*-C3*-N4*	65.2 (8)
C2-C3-N4-C5	41.3 (7)	C2*-C3*-N4*-C5*	48.8 (7)
C3-N4-C5-C6	-110.6 (6)	C3*-N4*-C5*-C6*	-112.2 (6)
N4-C5-C6-N7	6.8 (7)	N4*-C5*-C6*-N7*	2.8 (8)
C5-C6-N7-C8	100.6 (6)	C5*-C6*-N7*-C8*	91.8 (7)
C6-N7-C8-C9	-44.1 (7)	C6*-N7*-C8*-C91*	- 31 6 (10)
		C6*-N7*-C8*-C92*	- 96.5 (12)
N7-C8-C9-01	- 62.3 (6)	N7*-C8*-C91*-O1*	- 75.0 (10)
		N7*-C8*-C92*-O1*	91-3 (17)
C8-C9-01-C2	126.6 (5)	C8*-C91*-O1*-C2*	119.8 (9)
		C8*-C92*-O1*-C2*	- 65-2 (27)
C9-01-C2-C3	- 123·2 (6)	C91*-O1*-C2*-C3*	-117.7 (8)
		C92*	-48.3 (21)
\$1—N4—C3—C2	- 173-6 (4)	\$3*—N4*—C3*—C2*	- 168·7 (5)
S1-N4-C5-C6	106-3 (5)	S3-N4*-C5*-C6*	107.6 (5)
C11—S1—N4—C5	83·3 (4)	C31S3N4*C5*	87.7 (4)
C11—S1—N4—C3	- 62.0 (5)	C31—S3—N4*—C3*	- 54.0 (5)
S2—N7—C8—C9	174-1 (4)	\$4—N7*—C8*—C91*	176-5 (6)
		S4—N7*—C8*—C92*	111.6 (12)
S2—N7—C6—C5	- 119-0 (5)	\$4—N7*—C6*—C5*	-117.6 (6)
C21—S2—N7—C8	- 80.7 (5)	C41—S4—N7*—C8*	- 78.8 (6)
C21—S2—N7—C6	137.7 (6)	C41—S4—N7*—C6*	129.5 (5)

* Atoms in molecule 2.

standard reflection 731, count variation 2.79%. Structure solved by direct methods using SHELX76 (Sheldrick, 1976), refinement carried out by fullmatrix least squares using F magnitudes, 830 parameters (refined in two blocks, one for each molecule). All H atoms located on a difference map. Final R =0.0455, unit weights, S = 1.6008. The absolute configuration of the molecules was established; the final R value for the alternative enantiomorph is 0.0577. Max. shift/e.s.d. = 0.488; the largest peaks on the final difference map were 0.33 and $-0.4 \text{ e } \text{Å}^{-3}$. Complex atomic scattering factors from SHELX76.

Discussion. The final atomic coordinates are listed in Table 1,* bond lengths and bond angles in Table 2 and selected torsion angles in Table 3. The structures of molecules 1 and 2, with the atom-numbering scheme, are shown in Figs. 1(a) and 1(b).

There are two different molecules in the asymmetric unit. The main difference is that while molecule 1 exists as one conformer, molecule 2 occurs in two forms in a ratio of 0.63:0.37. The heterocyclic rings of molecule 1 and the predominant form in molecule 2 are in a chair-like conformation. They are approximately symmetrical with respect to a pseudo mirror plane passing through O1 and the middle of the C5—C6 bond: the asymmetry parameter (Duax & Norton, 1975) is $\Delta_m = 5.5$ (6)° for molecule 1 and 14.2 (9)° for molecule 2. The heterocyclic ring of the other form of molecule 2 is in a twist-chair conformation.

The eight torsion-angle values about the S-N bond are in agreement with the data gathered by

Fig. 1. The structure of (a) molecule 1 and (b) molecule 2 with the atom-numbering scheme.

^{*} Lists of structure factors, anisotropic thermal parameters and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54342 (31 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Kálmán, Czugler & Argay (1981). The orientation of both tosyl substituents, with respect to the heterocyclic ring, is the same for molecules 1 and 2. A pronounced tendency to form pyramidal bonds is observed for N4 and N7 in both molecules; the sums of the bond angles about N fall in the range $348 \cdot 1 353 \cdot 5^{\circ}$.

This work was supported by project R.P.II.10 from the Polish Ministry of National Education.

References

- DUAX, W. L. & NORTON, D. A. (1975). Atlas of Steroid Structure, Vol. 1, p. 18. New York: IFI/Plenum.
- GLINKA, R., MIKICIUK-OLASIK, E. & KOTEŁKO, B. (1977). Rocz. Chem. 51, 351–355.
- Kálmán, A., Czugler, M. & Argay, G. (1981). Acta Cryst. B37, 868-877.
- KAPUŚCIŃSKI, J., LINIECKI, J., DURSKI, K. & MIKICIUK-OLASIK, E. (1986). Nucl. Med. 25, 188–193.
- MIKICIUK-OLASIK, E. & KOTEŁKO, B. (1984). Pol. J. Chem. 58, 1211-1214.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1992). C48, 97-99

Structural Studies of Some Benzodiazepines. II. Structure of 3-(Isopropylamino)-4,5-dihydro-1*H*-2,4-benzodiazepine Hydroiodide (2)

BY A. M. BRZOZOWSKI AND A. STĘPIEŃ

Department of Crystallography, Institute of Chemistry, University of Łódź, Nowotki 18, 91-416 Łódź, Poland

E. Brzezińska

Institute of Chemistry and Technology of Drugs, School of Medicine, Narutowicza 120a, 90-145 Łódź, Poland

AND S. LECOCQ

Laboratoire de Minéralogie-Cristallographie associé au CNRS (UA805), Université Claude Bernard Lyon I, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne CEDEX, France

(Received 5 May 1989; accepted 14 June 1991)

Abstract. $C_{12}H_{19}N_3^+$. I^- , $M_r = 332.207$, orthorhombic, $P2_12_12_1$, a = 12.235 (3), b = 14.671 (3), c = 7.723 (2) Å, V = 1386.28 (57) Å³, Z = 4, $D_x = 1.5917$ (7) g cm⁻³, λ (Cu $K\alpha$) = 1.54178 Å, $\mu = 181.8$ cm⁻¹, F(000) = 664, diffractometer data at room temperature, R = 5.56% for 2672 reflections with $I > 3\sigma(I)$. The benzodiazepine ring is in an envelope-type conformation, all N atoms are protonated and form hydrogen bonds with an I^- ion.

Introduction. This work is the second part in a series of crystal structure investigations of some benzodiazepine derivatives. The structure of 3-(benzylamino)-4,5-dihydro-1*H*-2,4-benzodiazepine hydrochloride (1) was reported earlier (Brzozowski, Stępień, Brzezińska, Glinka & Bavoux, 1989). Pharmacological experiments (E. Brzezińska & R. Glinka, unpublished results) have shown that (1) and (2) exhibit a depressive action on the central nervous system, reflected by the depression of the spontaneous locomotor activity. Both compounds also depressed the apomorphine-induced excitation and stereotypy in rats and induced hypothermia in mice. Thus, these compounds possess neuroleptic activity, which, however, is not very strong. (1) and (2) are weakly bound to the D_1 and D_2 receptors. Compound (1) also shows analgesic activity.

Experimental. Colourless crystals, equidimensional in habit (~0.6 mm), were obtained from ethanol at room temperature; the specimen used for the X-ray work, of size $0.2 \times 0.2 \times 0.2$ mm, was cut from a larger crystal. Preliminary cell parameters were obtained from Weissenberg photographs. Diffraction data measured at room temperature on a CAD-4 diffractometer with graphite-monochromatized Cu $K\alpha$ radiation. Lattice parameters determined by least squares using setting angles of 25 reflections with $\theta_{max} = 50.0^{\circ}$. 3142 reflections (1/4 Ewald sphere)

0108-2701/92/010097-03\$03.00

© 1992 International Union of Crystallography